Course Syllabus

Course from study programme for the cycle: 2022/2023

I. General Information

Course name	Algorithms and computational complexity
Programme	Informatics
Level of studies (BA, BSc, MA, MSc, long-cycle	BA
MA)	
Form of studies (full-time, part-time)	full-time
Discipline	Informatics
Language of instruction	english

Course coordinator Paweł Wójcik, PhD

Type of class (use only the types mentioned below)	Number of teaching hours	Semester	ECTS Points
lecture	15	VI	3
tutorial			
classes			
laboratory classes	15	VI	
workshops			
seminar			
introductory seminar			
foreign language			
classes			
practical placement			
field work			
diploma laboratory			
translation classes			
study visit			

Course pre-requisites	Basic programming knowledge (data types, conditional statements, loops,
	arrays)

II. Course Objectives

The aim of the course is to introduce students to issues related to design and analysis of algorithms and computational complexity.

		Deference to
Symbol		Reference to
	Description of course learning outcome	programme learning
		outcome
	KNOWLEDGE	
W_01	Students acquire knowledge of basic concepts of algorithms	K_W01
	and computational complexity	K_W03
		K_W06
W_02	Students acquire knowledge of techniques of algorithms desi-	K_W01
	gning	K_W03
		K_W06
W_03	Students acquire knowledge of basic concepts of algorithm	K_W01
-	analysis	 КW03
		кККК
	SKILLS	_
U_01	Students are able to implements presented algorithms in the	K_U04
-	programming language	 КU08
		К_009
		 K_U17
		K U22
U_02	Students are able to analyse and evaluate presented algori-	K_U07
	thms	K_U08
		K_U09
		K U22
	SOCIAL COMPETENCIES	<u> </u>
K_01	Students are able to formulate an opinion regarding algori-	К_КО1
N_01	thms and computational complexity	N_101
K 02		K K02
К_02	Students can work on his/her own and in a team designing	К_КО2
	and developing algorithms	

III. Course learning outcomes with reference to programme learning outcomes

IV. Course Content

- 1. Induction.
- 2. Computational complexity of algorithms. Asymptotic notations.
- 3. Recurrent schemes implicit and explicit representation.
- 4. Review of algorithmic techniques. Method of "divide and conquer".
- 5. Dynamic programming and greedy method.

V. Didactic methods used and forms of assessment of learning outcomes

Symbol	Didactic methods (choose from the list)	Forms of assessment (choose from the list)	Documentation type (choose from the list)
	KNOWLEDGE		
W_01	Conventional Lecture /	Exam / Written test	Evaluated test / written
	Problem lecture		test
W_02	Conventional Lecture /	Exam / Written test	Evaluated test / written
	Problem lecture		test
W_03	Conventional Lecture /	Exam / Written test	Evaluated test / written

	Problem lecture		test	
		SKILLS		
U_01	Laboratory Classes /	Exam / Written test	Evaluated test / written	
	PBL (Problem-		test	
	Based Learning)			
	Design thinking			
U_02	Laboratory Classes /	Exam / Written test	Evaluated test / written	
	PBL (Problem-		test	
	Based Learning)			
	Design thinking			
	SOCIAL COMPETENCIES			
K_01	Laboratory Classes /	Exam / Written test	Evaluated test / written	
	PBL (Problem-		test	
	Based Learning)			
	Design thinking			
K_02	Laboratory Classes /	Exam / Written test	Evaluated test / written	
	PBL (Problem-		test	
	Based Learning)			
	Design thinking			

VI. Grading criteria, weighting factors.....

Exam – 100%.

- 90 100% excellent
- 80 89% very good
- 70 79% good
- 60 69% satisfactory
- 50 59% sufficient
- 50% fail

VII. Student workload

Form of activity	Number of hours
Number of contact hours (with the teacher)	60
Number of hours of individual student work	30

VIII. Literature

Basic literature
K. A. Ross, Ch. Wright, Discrete Mathematic - V edition, Pearson 2002
N. P. Grimaldi, Discrete and Combinatorial Mathematics, Pearson 2004
Additional literature
T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, The MIT Press, 2009