
annex 5 to programme documentation

Course Syllabus

Course from study programme for the cycle: 2022/2023

I. General Information

Course name Software engineering
Programme Computer science
Level of studies (BA, BSc, MA, MSc, long-cycle 
MA)

BA

Form of studies (full-time, part-time) Full-time
Discipline Computer science
Language of instruction English

Course coordinator Rafał Lizut

Type of class (use only
the types mentioned

below)

Number of teaching
hours

Semester ECTS Points

lecture 30 5 5
tutorial
classes
laboratory classes 30 5
workshops
seminar
introductory seminar
foreign language 
classes
practical placement
field work
diploma laboratory
translation classes
study visit

Course pre-requisites Knowledge of structural and object-oriented programming

II. Course Objectives

Raising the level of knowledge of students in the field of software engineering
Presentation and detailed discussion of all aspects of software development from the initial phase 
of the specification up to its maintenance after the date of commencement of use
Familiarize students with their ability to work in accordance with structural, object and agile 
methodologies



annex 5 to programme documentation

III. Course learning outcomes with reference to programme learning outcomes

Symbol
Description of course learning outcome

Reference to
programme learning

outcome
KNOWLEDGE

W_01 The student knows what is software engineering, the process 
of software development, project management

K_W04, K_W06

W_02 The student knows how software requirements should be set, 
how the requirements engineering process looks like, system 
modeling, software prototyping, verification, testing and 
acceptance of approved software

K_W04, K_W06

W_03 The student knows what are the methods of personnel 
management, quality management, software estimation, 
software upgrading

K_W04, K_W06

SKILLS
U_01 The student constructs non-functional requirements and 

prepare software specifications
K_U02, K_U04, 
K_U13, K_U14, 
K_U17, K_U23, 
K_U29, K_U30

U_02 Student uses diagrams describing the structure and behavior 
of the program

K_U02, K_U04, 
K_U13, K_U14, 
K_U23, K_U30

U_03 The student uses the UML language to the basic level K_U02, K_U04, 
K_U13, K_U14, 
K_U23, K_U30

U_04 Student develops a project plan for software development K_U02, K_U04, 
K_U13, K_U14, 
K_U17, K_U23, 
K_U29, K_U30

U_05 Student controls and manages versions of the created 
software and adhere to the rules of existing programmers 
while working in a team

K_U02, K_U04, 
K_U13, K_U17, 
K_U23, K_U30

SOCIAL COMPETENCIES
K_01 Student recognizes to the complexity of problems with which 

he may meet in life
K_K01, K_K02, K_K04,
K_K05

K_02 Student skillfully solves software engineering problems using 
known methods and objectively evaluates obtained results

K_K01, K_K02, K_K04,
K_K05

K_03 Student is able to work both individually and as a team, 
properly planning his and the team's work in the context of 
the set goals

K_K01, K_K02, K_K04,
K_K05

IV. Course Content

1 Introduction 
2 Software development processes 
3 Requirements engineering 
4 Structural methods 
5 Object-oriented methods 
6 Basics of UML 6 Code quality, code inspections 



annex 5 to programme documentation

7 Testing 
8 User documentation 
9 Maintenance 
10 Critical systems 
11 Formal methods 
12 Design patterns

V. Didactic methods used and forms of assessment of learning outcomes

Symbol Didactic methods
(choose from the list)

Forms of assessment
(choose from the list)

Documentation type
(choose from the list)

KNOWLEDGE
W_01 Conventional 

lecture/Problem lecture
Exam Evaluated test / written 

test
W_02 Conventional 

lecture/Problem lecture
Exam Evaluated test / written 

test
W_03 Conventional 

lecture/Problem lecture
Exam Evaluated test / written 

test
SKILLS 

U_01 Project-based
learning
design thinking

Preparation / 
implementation of the 
project

Project rating card

U_02 Project-based
learning
design thinking

Preparation / 
implementation of the 
project

Project rating card

U_03 Project-based
learning
design thinking

Preparation / 
implementation of the 
project

Project rating card

U_04 Project-based
learning
design thinking

Preparation / 
implementation of the 
project

Project rating card

U_05 Project-based
learning
design thinking

Preparation / 
implementation of the 
project

Project rating card

SOCIAL COMPETENCIES
K_01 Project-based

learning
design thinking

Preparation / 
implementation of the 
project

Project rating card

K_02 Project-based
learning
design thinking

Preparation / 
implementation of the 
project

Project rating card

K_03 Project-based
learning
design thinking

Preparation / 
implementation of the 
project

Project rating card

VI. Grading criteria, weighting factors
90 – 100% - very good (5.0),
80 – 89% - good plus (4.5),
70 – 79% - good (4.0),



annex 5 to programme documentation

60 – 69% - satisfactory plus (3.5),
50 – 59% - satisfactory (3.0),
Less than 50% - unsatisfactory (2.0).



annex 5 to programme documentation

VII. Student workload

Form of activity Number of hours
Number of contact hours (with the teacher) 80

Number of hours of individual student work 60

VIII. Literature

Basic literature
1. Sommerville, Ian (2007) [1982]. "1.1.2 What is software engineering?". Software Engineering (8th
ed.). Harlow, England: Pearson Education. p. 7. ISBN 0-321-31379-8. 
2.Peter, Naur; Randell, Brian (7–11 October 1968). Software Engineering: Report of a conference 
sponsored by the NATO Science Committee (PDF). Garmisch, Germany: 
3. Scientific Affairs Division, NATO. Retrieved 2008-12-26.2018 International Conference on 
Software Engineering celebrating its 40th anniversary, and 50 years of Software engineering. "ICSE 
2018 - Plenary Sessions - Margaret Hamilton". Retrieved 9 Aug 2018. 
4."Software Engineering Body of Knowledge (SWEBOK Version 3), 2014" (pdf). www.swebok.org. 
IEEE Computer Society. Retrieved 24 May2016. 
5. Abran, Alain, ed. (2005) [2004]. "Chapter 1: Introduction to the Guide". Guide to the Software 
Engineering Body of Knowledge. Los Alamitos: IEEE Computer Society. ISBN 0-7695-2330-7. 
Retrieved 2010-09-13. 
6. http://staruml.sourceforge.net/en/ StarUML - The Open Source UML/MDA Platform 
7. http://cnx.org/content/m15092/latest/ StarUML Tutorial 
8. http://www.microtool.de/objectif/en/index.asp objectiF - Tool for Model-Driven Software 
Development with UML 9. 
http://www.microtool.de/mT/pdf/objectiF/01/Tutorials/JavaTutorial.pdf Developing Java 
Applications with UML 
10. Abran, Alain; Moore, James W.; Bourque, Pierre; Dupuis, Robert; Tripp, Leonard L. (2004). 
Guide to the Software Engineering Body of Knowledge. IEEE.ISBN 0-7695-2330-7. 
11. Sommerville, Ian (2008). Software Engineering (7 ed.). Pearson Education. ISBN 978-81-7758- 
530-8. Retrieved 10 January 2013.
Additional literature
1.G. Mathew, A. Agrawal, and T. Menzies, “A Method for Finding Trends in Software Research,” 
2018; https://arxiv.org/pdf/1608.08100.pdf. 
2.K.-Y. Cai and D. Card, “An Analysis of Research Topics in Software Engineering—2006,” J. Systems 
and Software, vol. 81, no. 6, 2008, pp. 1051–1058. 
3. V. Garousi and G. Ruhe, “A Bibliometric/Geographic Assessment of 40 Years of Software 
Engineering Research (1969–2009),” Int’l J. Software Eng. and Knowledge Eng., vol. 23, no. 9, 2013, 
pp. 1343–1366. 
4. S. Datta, S. Sarkar, and A. Sajeev, “How Long Will This Live? Discovering the Lifespans of Software
Engineering Ideas,” IEEE Trans. Big Data, vol. 2, no. 2, 2016, pp. 124–137.

https://arxiv.org/pdf/1608.08100.pdf

