Course Syllabus

Course from study programme for the cycle: 2023/2024

I. General Information

Course name	Artificial intelligence
Programme	Informatics
Level of studies (BA, BSc, MA, MSc, long-cycle	BA
MA)	
Form of studies (full-time, part-time)	full-time
Discipline	Informatics
Language of instruction	English

Course coordinator/person responsible	dr hab. Ryszard Kozera

Type of class (use only the types mentioned below)	Number of teaching hours	Semester	ECTS Points
lecture	30	IV	5
tutorial			
classes			
laboratory classes	30	IV	
workshops			
seminar			
introductory seminar			
foreign language			
classes			
practical placement			
field work			
diploma laboratory			
translation classes			
study visit			

Course pre-requisites	W1. Logic. Propositional logic. Predicate logic.
	W2. Linear algebra and analytic geometry.
	W3. Discrete mathematics.
	W4. Introduction to computer science.

II. Course Objectives

- C1. Familiarize students with the basics of proving the truth of sentences and formulas, truth table, application of inferences and refutation in the area of artificial intelligence
- C2. Familiarize students with declarative programming in a selected programming language
- C3. Familiarize students with automation of theorem proving.
- C4. Exercises with documentation

C5. Application of artificial intelligence methods

III. Course learning outcomes with reference to programme learning outcomes

Symbol	Description of course learning outcome	Reference to programme learning outcome		
	KNOWLEDGE			
W_01	The student understands the meaning of computer science in the area of artificial intelligence	K_W01, K_W10		
W_02	The student has a basic knowledge in the area of artificial intelligence	K_W06, K_W10		
	SKILLS			
U_01	The student has the ability to search and to use knowledge in order to solve defined informatics problems (especially in the area of AI) using documentation, help files, Internet and literature	K_U02		
U_02	The student is able to use specialized vocabulary in the area of computer science and artificial intelligence K_U04			
U_03	The student is able to apply basic recursive algorithms, searching algorithms, sorting algorithms and implementing them in declarative programming language and chosen programming environment.	K_U09		
U_4	The student can apply data structures, implement data structures and use them.	K_U10		
U_5	The student is able to use basic issues of artificial intelligence	K_U16		
U_6	Jest gotowy do oceny poziomu swojej wiedzy i umiejętności oraz krytycznie ocenia odbierane treści	K_U23		
	SOCIAL COMPETENCIES			
K_01	Is ready to assess the level of his or her knowledge and skills. The student can conduct a critical evaluation of the received information.	K_K01		

IV. Course Content

- 1 Introduction to artificial intelligence.
- 2 Propositional logic in artificial intelligence.
- 3 Predicate logic in artificial intelligence.
- 4 Unification algorithm.
- 5 Programming in Prolog. Lists.
- 6 Herbrand's theorem.
- 7 Searching nad SLD trees.

V. Didactic methods used and forms of assessment of learning outcomes

Symbol	Didactic methods	Forms of assessment	Documentation type
	(choose from the list)	(choose from the list)	(choose from the list)

	KNOWLEDGE			
W_01	- Laboratory analysis	- written exam, test,	- written work,	
	- Discussion,	- preparation for classes	- paper printout,	
	- Conventional lecture,		- protocol	
	- Conversational lecture,			
	- Problem lecture			
W_02	- Laboratory analysis	- written exam, test,	- written work,	
	- Discussion,	- preparation for classes	- paper printout,	
	- Conventional lecture,		- protocol	
	- Conversational lecture,			
	- Problem lecture			
	SKILLS			
U_01,	- Laboratory classes,	- written exam, test,	- written work,	
U_02,	- Practical classes,	- project,	- folder of files,	
U_03,	- Discussion,	- preparation for classes	- protocol,	
U_04,	- Project-based learning			
U_05,	- design thinking			
U_06				
	SOCIAL COMPETENCIES			
K_01	- Laboratory classes,	- written exam, test,	- register of bonus points,	
	- Discussion,	- project,	- written work,	
	- Project-based learning	- work and activity during	- folder of files,	
	- design thinking	laboratories and lectures	- protocol,	

VI. Grading criteria, weighting factors.....

CLASSES:

Passing the classes - test (50% of final evaluation) after the half semester. Group project to complete (50% of final evaluation).

Grading scale: below 50% fail (2.0).

Detailed assessment rules are given to students with each subject edition.

LECTURE:

Written exam (for students which pass classes).

Grading scale: 50%-57% sufficient (3.0), 58%-64% satisfactory (3.5), 65%-72% good (4.0), 73%-80% very good (4.5), above 80% excellent (5.0), below 50% fail (2.0)

VII. Student workload

Form of activity	Number of hours
Number of contact hours (with the teacher)	Lecture 30,
	Classes 30,
	Consultations 30,
Number of hours of individual student work	Preparation for classes 30,
	Studying literature 10,

VIII. Literature

Basic literature

- 1. R. Kozera, "Artificial Intelligence and Logic Programming" wykład
- 2. G. Royle, "Logic programming", 1999
- 3. M. Ben-Ari, "Mathematical Logic for Informatics", 2006

Additional literature

- 1. J. Wielemaker, "SWI Prolog 2.7 Reference Manual", Updated for version 2.7.14, September 1996, University of Amsterdam, Dept. of Social Science Informatics
- 2. SWI Prolog Documentation, link: swi-prolog.org (16.12.2017)
- 3. James Lu, Jeru d J. Mead, "Prolog. A Tutorial Introduction", Computer Science Department Bucknell University, Lewisburg, PA 17387.
- 4. Leon S. Sterling, Ehud Y. Shapiro, "The Art of Prolog, Second Edition. Advanced Programming Techniques", MIT Press, 1994
- 5. William F.Clocksin, Christopher S. Mellish, "Programming in Prolog. Using ISO Standard. Fifth Edition", Springer-Verlag Berlin Heidelberg 2003