Course Syllabus

Course from study programme for the cycle: 2023/2024

I. General Information

Course name	Object-oriented programming
Programme	Informatics
Level of studies (BA, BSc, MA, MSc, long-cycle	BA
MA)	
Form of studies (full-time, part-time)	Full-time
Discipline	Informatics
Language of instruction	English

Course coordinator	Dorota Pylak, PhD
	,

Type of class (use only	Number of teaching	Semester	ECTS Points
the types mentioned	hours		
below)			
lecture	30	INF: III MATH: III or V	5
tutorial			
classes			
laboratory classes	30	INF: III MATH: III or V	
workshops			
seminar			
introductory seminar			
foreign language			
classes			
practical placement			
field work			
diploma laboratory			
translation classes			
study visit			

Course pre-requisites	Introduction to computer science.	
	Fundamentals of algorithms and programming	

II. Course Objectives

Familiarizing students with the methodology and technique of object-oriented programming.

Familiarizing students with the Java programming language

Presentation of features of the modern programming language

Symbol	Description of course learning outcome	Reference to programme learning
	KNOWLEDGE	
W_01	The student is able to present the basic concepts of object oriented programming	INF: K_W01, K_W06, MAT: K_W01, K_W04
W_02	The student is able to analyze the source files of object orien- ted applications	INF: K_W03, K_W06; MAT: K_W01, K_W04
SKILLS		
U_01	The student is able to apply the rules for defining classes, cre- ating objects and modeling selected issues in an object-orien- ted way	INF: K_U04, K_U06, K_U08, K_U11, K_U12, K_U17 MAT: K_U38
U_02	The student is able to write an application in an object-orien- ted programming language	INF: K_U07, K_U08, K_U10, K_U11, K_U12, K_U17 MAT: K_U38
U_03	The student is able to use inheritance and polymorphism, abs- tract classes and interfaces	INF: K_U08, K_U10, K_U11, K_U12, K_U17 MAT: K_U38
SOCIAL COMPETENCIES		
K_01	The student is able to formulate a solution to the given pro- blem, is open to the new solutions	INF: K_K01 MAT: K_K02, K_K05
K_02	The student solves the given problems individually and while working in a group.	INF: K_K01 MAT: K_K02, K_K05

III. Course learning outcomes with reference to programme learning outcomes

IV. Course Content

- 1. Paradigm of object-oriented programming
- 2. The concepts of class and object, fields, methods, constructors, accessibility
- 3. Static fields and methods in classes
- 4. String, Math and Scanner classes- examples of usage.
- 4. Inheritance
- 5. The Object class and its methods.
- 6. Polymorphism.
- 7. Abstract classes,
- 8. Interfaces

V. Didactic methods used and forms of assessment of learning outcomes

Symbol	Didactic methods (choose from the list)	Forms of assessment (choose from the list)	Documentation type (choose from the list)
KNOWLEDGE			
W_01	Conventional lecture /	Exam/Written test	Examination card / writ-
	Guided practice		ten test/report file
W_02	Conventional lecture /	Exam/Written test	Examination card / writ-
	Guided practice		ten test/report file

SKILLS			
U_01	-practical classes	Exam/Written test	Examination card / writ-
	-design thinking		ten test/report file
U_02	-practical classes	Exam/Written test	Examination card / writ-
	-design thinking		ten test/report file
U_03	-practical classes	Exam/Written test	Examination card / writ-
	-design thinking		ten test/report file
SOCIAL COMPETENCIES			
K_01	Discussion, PBL (Problem-	Exam/Written test	Examination card / writ-
	Based Learning)		ten test/report file
	design thinking		
K_02	Discussion, PBL (Problem-	Exam/Written test	Examination card / writ-
	Based Learning)		ten test/report file
	design thinking		

VI. Grading criteria, weighting factors.....

To pass a course, the student has to attend a classes and has to pass the tests and the final exam.

- passing classes - colloquia - 90% of the final grade, student's activity and work during classes - 10% of the final grade.

- written exam - for people who have passed the classes. Detailed conditions of exemption are given to students with each course edition.

Detailed assessment rules are given to the students with each edition of the course.

VII. Student workload

Form of activity	Number of hours
Number of contact hours (with the teacher)	90
Number of hours of individual student work	60

VIII. Literature

Basic literature

Herbert Schildt, Java: The Complete Reference, Eleventh Edition, McGraw-Hill Education, 2018 Herbert Schildt, Java: A Beginner's Guide, Eighth Edition, McGraw-Hill Education, 2018 http://docs.oracle.com/javase/8/docs/

http://docs.oracle.com/javase/11/docs/

C. S. Horstmann, G. Cornell, Core Java Volume I – Fundamentals (10th Edition), Pearson Education, 2018

C. S. Horstmann, Java, Core Java, Volume II--Advanced Features, 11th Edition, Pearson Education, 2019

Additional literature

R. Sedgewick, K. Wayne, Algorithms, 4th ed., Addison-Wesley, Upper Saddle River, NJ, 2011. N. Wirth, Algorithms + Data Structures = Programs, Prentice-Hall 1976